芯片薄膜沉积 – 超声波薄膜喷涂设备 – 超声波精密喷涂 – 驰飞超声波喷涂

芯片薄膜沉积

芯片薄膜沉积 – 超声波薄膜喷涂设备 – 超声波精密喷涂 – 驰飞超声波喷涂

芯片是由一系列有源和无源电路元件堆叠而成的3D结构,薄膜沉积是芯片前道制造的核心工艺之一。从芯片截取横截面来看,芯片是由一层层纳米级元件堆叠而成,所有有源电路元件(例如晶体管、存储单元等)集中在芯片底部,另外的部分由上层的铝/铜互连形成的金属层及各层金属之间的绝缘介质层组成。芯片前道制造工艺包括氧化扩散、薄膜沉积、涂胶显影、光刻、离子注入、刻蚀、清洗、检测等,薄膜沉积是其中的核心工艺之一,作用是在晶圆表面通过物理/化学方法交替堆叠SiO2、SiN等绝缘介质薄膜和Al、Cu等金属导电膜等,在这些薄膜上可以进行掩膜版图形转移(光刻)、刻蚀等工艺,最终形成各层电路结构。由于制造工艺中需要薄膜沉积技术在晶圆上重复堆叠薄膜,因此薄膜沉积技术可视为前道制造中的“加法工艺”。

芯片薄膜沉积 - 超声波薄膜喷涂设备 - 超声波精密喷涂 - 驰飞超声波喷涂

芯片是由一系列有源和无源电路元件堆叠而成的3D结构,薄膜沉积是芯片前道制造的核心工艺之一。从芯片截取横截面来看,芯片是由一层层纳米级元件堆叠而成,所有有源电路元件(例如晶体管、存储单元等)集中在芯片底部,另外的部分由上层的铝/铜互连形成的金属层及各层金属之间的绝缘介质层组成。芯片前道制造工艺包括氧化扩散、薄膜沉积、涂胶显影、光刻、离子注入、刻蚀、清洗、检测等,薄膜沉积是其中的核心工艺之一,作用是在晶圆表面通过物理/化学方法交替堆叠SiO2、SiN等绝缘介质薄膜和Al、Cu等金属导电膜等,在这些薄膜上可以进行掩膜版图形转移(光刻)、刻蚀等工艺,最终形成各层电路结构。由于制造工艺中需要薄膜沉积技术在晶圆上重复堆叠薄膜,因此薄膜沉积技术可视为前道制造中的“加法工艺”

薄膜沉积是决定薄膜性能的关键,相关工艺和设备壁垒很高。芯片制造的关键在于将电路图形转移到薄膜上这一过程,薄膜的性能除了与沉积材料有关,最主要受到薄膜沉积工艺的影响。薄膜沉积工艺/设备壁垒很高,主要来自:第一,芯片由不同模块工艺集成,薄膜沉积是大多数模块工艺的关键步骤,薄膜本身在不同模块/器件中的性能要求繁多且差异化明显;第二,薄膜沉积工艺需要满足不同薄膜性能要求,新材料出现或器件结构的改变要求不断研发新的工艺或设备;第三,更严格的热预算要求更低温的生长工艺,薄膜性能不断提升要求设备具备更好集成度,另外,沉积过程还要考虑沉积速率、环境污染等指标。

超声波喷涂具有精细可控喷涂流速、涂敷涂层薄且均匀、喷涂范围可控等优势非常适用于喷涂电子产品,并越来越多地用于研究和生产。超声喷涂技术可用于任何宽度的基材上沉积均匀的涂层。超声波喷涂技术能够以极高的均匀性制造这些非常薄的涂层,获得精细和可重复的结果,以提高产品的功能。

英文网站:CHEERSONIC ULTRASONIC COATING SOLUTION